Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2200544

ABSTRACT

A novel series of pyrido[2,3-d]pyrimidines; pyrido[3,2-e][1,3,4]triazolo; and tetrazolo[1,5-c]pyrimidines were synthesized via different chemical transformations starting from pyrazolo[3,4-b]pyridin-6-yl)-N,N-dimethylcarbamimidic chloride 3b (prepared from the reaction of o-aminonitrile 1b and phosogen iminiumchloride). The structures of the newly synthesized compounds were elucidated based on spectroscopic data and elemental analyses. Designated compounds are subjected for molecular docking by using Auto Dock Vina software in order to evaluate the antiviral potency for the synthesized compounds against SARS-CoV-2 (2019-nCoV) main protease M pro. The antiviral activity against SARS-CoV-2 showed that tested compounds 7c, 7d, and 7e had the most promising antiviral activity with lower IC50 values compared to Lopinavir, "the commonly used protease inhibitor". Both in silico and in vitro results are in agreement.


Subject(s)
Antiviral Agents , Pyrimidines , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/chemistry , SARS-CoV-2/drug effects
2.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892922

ABSTRACT

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Subject(s)
Anti-Anxiety Agents , Pentylenetetrazole , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Antidepressive Agents/pharmacology , Molecular Docking Simulation , Pentylenetetrazole/adverse effects , Pyridines/chemistry , Pyrimidines/chemistry , Receptors, GABA-A , Structure-Activity Relationship
3.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects , COVID-19 Drug Treatment
4.
Molecules ; 26(22)2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1538425

ABSTRACT

Novel complexes of type [Cu(N-N)(dmtp)2(OH2)](ClO4)2·dmtp ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenantroline and dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) were designed in order to obtain biologically active compounds. Complexes were characterized as mononuclear species that crystallized in the space group P-1 of the triclinic system with a square pyramidal geometry around the copper (II). In addition to the antiproliferative effect on murine melanoma B16 cells, complex (1) exhibited low toxicity on normal BJ cells and did not affect membrane integrity. Complex (2) proved to be a more potent antimicrobial in comparison with (1), but both compounds were more active in comparison with dmtp-both against planktonic cells and biofilms. A stronger antimicrobial and antibiofilm effect was noticed against the Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). Both electron paramagnetic resonance (EPR) and Saccharomyces cerevisiae studies indicated that the complexes were scavengers rather than reactive oxygen species promoters. Their DNA intercalating capacity was evidenced by modifications in both absorption and fluorescence spectra. Furthermore, both complexes exhibited nuclease-like activity, which increased in the presence of hydrogen peroxide.


Subject(s)
Anti-Infective Agents , Chelating Agents , Coordination Complexes , Methicillin-Resistant Staphylococcus aureus/growth & development , Pyrimidines , Saccharomyces cerevisiae/growth & development , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Mice , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology
5.
J Am Chem Soc ; 143(48): 20095-20108, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1531986

ABSTRACT

Chemical modifications of native proteins can affect their stability, activity, interactions, localization, and more. However, there are few nongenetic methods for the installation of chemical modifications at a specific protein site in cells. Here we report a covalent ligand directed release (CoLDR) site-specific labeling strategy, which enables the installation of a variety of functional tags on a target protein while releasing the directing ligand. Using this approach, we were able to label various proteins such as BTK, K-RasG12C, and SARS-CoV-2 PLpro with different tags. For BTK we have shown selective labeling in cells of both alkyne and fluorophores tags. Protein labeling by traditional affinity methods often inhibits protein activity since the directing ligand permanently occupies the target binding pocket. We have shown that using CoLDR chemistry, modification of BTK by these probes in cells preserves its activity. We demonstrated several applications for this approach including determining the half-life of BTK in its native environment with minimal perturbation, as well as quantification of BTK degradation by a noncovalent proteolysis targeting chimera (PROTAC) by in-gel fluorescence. Using an environment-sensitive "turn-on" fluorescent probe, we were able to monitor ligand binding to the active site of BTK. Finally, we have demonstrated efficient CoLDR-based BTK PROTACs (DC50 < 100 nM), which installed a CRBN binder onto BTK. This approach joins very few available labeling strategies that maintain the target protein activity and thus makes an important addition to the toolbox of chemical biology.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/chemistry , Fluorescent Dyes/chemistry , Ligands , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/metabolism , Agammaglobulinaemia Tyrosine Kinase/metabolism , Catalytic Domain , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Half-Life , Humans , Piperidines/chemistry , Piperidines/metabolism , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , SARS-CoV-2/enzymology
6.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1463767

ABSTRACT

Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure-activity relationship in the studied compounds.


Subject(s)
Anti-Infective Agents/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chemistry Techniques, Synthetic/methods , Drug Discovery , Drug Resistance, Microbial , Humans , Models, Molecular , Pyrimidines/chemistry , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
7.
Mol Imaging Biol ; 24(1): 135-143, 2022 02.
Article in English | MEDLINE | ID: covidwho-1372811

ABSTRACT

PURPOSE: Molecular imaging has provided unparalleled opportunities to monitor disease processes, although tools for evaluating infection remain limited. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by lung injury that we sought to model. Activated macrophages/phagocytes have an important role in lung injury, which is responsible for subsequent respiratory failure and death. We performed pulmonary PET/CT with 124I-iodo-DPA-713, a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by activated macrophages cells, to evaluate the local immune response in a hamster model of SARS-CoV-2 infection. PROCEDURES: Pulmonary 124I-iodo-DPA-713 PET/CT was performed in SARS-CoV-2-infected golden Syrian hamsters. CT images were quantified using a custom-built lung segmentation tool. Studies with DPA-713-IRDye680LT and a fluorescent analog of DPA-713 as well as histopathology and flow cytometry were performed on post-mortem tissues. RESULTS: Infected hamsters were imaged at the peak of inflammatory lung disease (7 days post-infection). Quantitative CT analysis was successful for all scans and demonstrated worse pulmonary disease in male versus female animals (P < 0.01). Increased 124I-iodo-DPA-713 PET activity co-localized with the pneumonic lesions. Additionally, higher pulmonary 124I-iodo-DPA-713 PET activity was noted in male versus female hamsters (P = 0.02). DPA-713-IRDye680LT also localized to the pneumonic lesions. Flow cytometry demonstrated a higher percentage of myeloid and CD11b + cells (macrophages, phagocytes) in male versus female lung tissues (P = 0.02). CONCLUSION: 124I-Iodo-DPA-713 accumulates within pneumonic lesions in a hamster model of SARS-CoV-2 infection. As a novel molecular imaging tool, 124I-Iodo-DPA-713 PET could serve as a noninvasive, clinically translatable approach to monitor SARS-CoV-2-associated pulmonary inflammation and expedite the development of novel therapeutics for COVID-19.


Subject(s)
Acetamides/chemistry , COVID-19/diagnostic imaging , COVID-19/veterinary , Iodine Radioisotopes/chemistry , Positron-Emission Tomography , Pyrazoles/chemistry , Pyrimidines/chemistry , SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Positron Emission Tomography Computed Tomography , Vero Cells
8.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1346516

ABSTRACT

We recently developed a molecule (GT-73) that blocked leukocyte transendothelial migration from blood to the peripheral tissues, supposedly by affecting the platelet endothelial cell adhesion molecule (PECAM-1) function. GT-73 was tested in an LPS-induced acute respiratory distress syndrome (ARDS) mouse model. The rationale for this is based on the finding that the mortality of COVID-19 patients is partly caused by ARDS induced by a massive migration of leukocytes to the lungs. In addition, the role of tert-butyl and methyl ester moieties in the biological effect of GT-73 was investigated. A human leukocyte, transendothelial migration assay was applied to validate the blocking effect of GT-73 derivatives. Finally, a mouse model of LPS-induced ARDS was used to evaluate the histological and biochemical effects of GT-73. The obtained results showed that GT-73 has a unique structure that is responsible for its biological activity; two of its chemical moieties (tert-butyl and a methyl ester) are critical for this effect. GT-73 is a prodrug, and its lipophilic tail covalently binds to PECAM-1 via Lys536. GT-73 significantly decreased the number of infiltrating leukocytes in the lungs and reduced the inflammation level. Finally, GT-73 reduced the levels of IL-1ß, IL-6, and MCP-1 in bronchoalveolar lavage fluid (BALF). In summary, we concluded that GT-73, a blocker of white blood cell transendothelial migration, has a favorable profile as a drug candidate for the treatment of ARDS in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Leukocytes/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/antagonists & inhibitors , Pyrimidines/pharmacology , Respiratory Distress Syndrome/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Animals , COVID-19/pathology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Movement/drug effects , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Leukocytes/immunology , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred BALB C , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Pyrimidines/chemistry , Respiratory Distress Syndrome/chemically induced , SARS-CoV-2
9.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288906

ABSTRACT

Coronavirus disease (COVID)-19 is the leading global health threat to date caused by a severe acute respiratory syndrome coronavirus (SARS-CoV-2). Recent clinical trials reported that the use of Bruton's tyrosine kinase (BTK) inhibitors to treat COVID-19 patients could reduce dyspnea and hypoxia, thromboinflammation, hypercoagulability and improve oxygenation. However, the mechanism of action remains unclear. Thus, this study employs structure-based virtual screening (SBVS) to repurpose BTK inhibitors acalabrutinib, dasatinib, evobrutinib, fostamatinib, ibrutinib, inositol 1,3,4,5-tetrakisphosphate, spebrutinib, XL418 and zanubrutinib against SARS-CoV-2. Molecular docking is conducted with BTK inhibitors against structural and nonstructural proteins of SARS-CoV-2 and host targets (ACE2, TMPRSS2 and BTK). Molecular mechanics-generalized Born surface area (MM/GBSA) calculations and molecular dynamics (MD) simulations are then carried out on the selected complexes with high binding energy. Ibrutinib and zanubrutinib are found to be the most potent of the drugs screened based on the results of computational studies. Results further show that ibrutinib and zanubrutinib could exploit different mechanisms at the viral entry and replication stage and could be repurposed as potential inhibitors of SARS-CoV-2 pathogenesis.


Subject(s)
Adenine/analogs & derivatives , Drug Repositioning , Molecular Dynamics Simulation , Piperidines/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Adenine/chemistry , Adenine/metabolism , Adenine/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Molecular Docking Simulation , Piperidines/metabolism , Piperidines/therapeutic use , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/metabolism , Pyrazoles/therapeutic use , Pyrimidines/metabolism , Pyrimidines/therapeutic use , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , COVID-19 Drug Treatment
10.
Molecules ; 26(5)2021 Mar 07.
Article in English | MEDLINE | ID: covidwho-1136523

ABSTRACT

With the emergence and global spread of the COVID-19 pandemic, the scientific community worldwide has focused on search for new therapeutic strategies against this disease. One such critical approach is targeting proteins such as helicases that regulate most of the SARS-CoV-2 RNA metabolism. The purpose of the current study was to predict a library of phytochemicals derived from diverse plant families with high binding affinity to SARS-CoV-2 helicase (Nsp13) enzyme. High throughput virtual screening of the Medicinal Plant Database for Drug Design (MPD3) database was performed on SARS-CoV-2 helicase using AutoDock Vina. Nilotinib, with a docking value of -9.6 kcal/mol, was chosen as a reference molecule. A compound (PubChem CID: 110143421, ZINC database ID: ZINC257223845, eMolecules: 43290531) was screened as the best binder (binding energy of -10.2 kcal/mol on average) to the enzyme by using repeated docking runs in the screening process. On inspection, the compound was disclosed to show different binding sites of the triangular pockets collectively formed by Rec1A, Rec2A, and 1B domains and a stalk domain at the base. The molecule is often bound to the ATP binding site (referred to as binding site 2) of the helicase enzyme. The compound was further discovered to fulfill drug-likeness and lead-likeness criteria, have good physicochemical and pharmacokinetics properties, and to be non-toxic. Molecular dynamic simulation analysis of the control/lead compound complexes demonstrated the formation of stable complexes with good intermolecular binding affinity. Lastly, affirmation of the docking simulation studies was accomplished by estimating the binding free energy by MMPB/GBSA technique. Taken together, these findings present further in silco investigation of plant-derived lead compounds to effectively address COVID-19.


Subject(s)
Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Biological Availability , Computational Biology/methods , Databases, Chemical , Drug Design , Humans , Hydrogen Bonding , Methyltransferases/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , Phytochemicals/metabolism , Plants, Medicinal/chemistry , Protein Binding , Protein Domains/drug effects , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Pyrimidines/toxicity , RNA Helicases/chemistry , Structure-Activity Relationship , Thermodynamics , Viral Nonstructural Proteins/chemistry , COVID-19 Drug Treatment
11.
BMC Public Health ; 21(1): 126, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1067211

ABSTRACT

BACKGROUND: Air pollution has been linked to increased mortality and morbidity. The Program 4 of the Healthy Aging in Industrial Environment study investigates whether the health and wellbeing benefits of physical activity (PA) can be fully realized in individuals living in highly polluted environments. Herein, we introduce the behavioral, psychological and neuroimaging protocol of the study. METHODS: This is a prospective cohort study of N = 1500 individuals aged 18-65 years comparing: (1) individuals living in the highly polluted, industrial region surrounding the city of Ostrava (n = 750), and (2) controls from the comparison region with relative low pollution levels in Southern Bohemia (n = 750). Quota sampling is used to obtain samples balanced on age, gender, PA status (60% active runners vs. 40% insufficiently active). Participants are screened and complete baseline assessments through online questionnaires and in-person lab-based assessments of physiological, biomechanical, neuroimaging and cognitive function parameters. Prospective 12-month intensive monitoring of air pollution and behavioral parameters (PA, inactivity, and sleep) follows, with a focus on PA-related injuries and psychological factors through fitness trackers, smartphones, and mobile apps. Subsequently, there will be a 5-year follow-up of the study cohort. DISCUSSION: The design of the study will allow for (1) the assessment of both short-term variation and long-term change in behavioral parameters, (2) evaluation of the incidence of musculoskeletal injuries and psychological factors impacting behavior and injury recovery, and (3) the impact that air pollution status (and change) has on behavior, psychological resilience, and injury recovery. Furthermore, the integration of MRI techniques and cognitive assessment in combination with data on behavioral, biological and environmental variables will provide an opportunity to examine brain structure and cognitive function in relation to health behavior and air pollution, as well as other factors affecting resilience against and vulnerability to adverse changes in brain structure and cognitive aging. This study will help inform individuals about personal risk factors and decision-makers about the impact of environmental factors on negative health outcomes and potential underlying biological, behavioral and psychological mechanisms. Challenges and opportunities stemming from the timing of the study that coincided with the COVID-19 pandemic are also discussed.


Subject(s)
Air Pollution/adverse effects , Exercise , Adolescent , Adult , Aged , Air Pollutants/analysis , Brain/diagnostic imaging , Brain/physiology , COVID-19 , Cognition/physiology , Female , Health Behavior , Healthy Aging , Humans , Male , Middle Aged , Neuroimaging , Prospective Studies , Pyrimidines/chemistry , Research Design , Resilience, Psychological , Surveys and Questionnaires , Young Adult
12.
Biophys Chem ; 267: 106478, 2020 12.
Article in English | MEDLINE | ID: covidwho-778539

ABSTRACT

Discovery of a potent SARS-CoV-2 main protease (Mpro) inhibitor is the need of the hour to combat COVID-19. A total of 1000 protease-inhibitor-like compounds available in the ZINC database were screened by molecular docking with SARS-CoV-2 Mpro and the top 2 lead compounds based on binding affinity were found to be 1,2,4 triazolo[1,5-a] pyrimidin-7-one compounds. We report these two compounds (ZINC000621278586 and ZINC000621285995) as potent SARS-CoV-2 Mpro inhibitors with high affinity (<-9 kCal/mol) and less toxicity than Lopinavir and Nelfinavir positive controls. Both the lead compounds effectively interacted with the crucial active site amino acid residues His41, Cys145 and Glu166. The lead compounds satisfied all of the druglikeness rules and devoid of toxicity or mutagenicity. Molecular dynamics simulations showed that both lead 1 and lead 2 formed stable complexes with SARS-CoV-2 Mpro as evidenced by the highly stable root mean square deviation (<0.23 nm), root mean square fluctuations (0.12 nm) and radius of gyration (2.2 nm) values. Molecular mechanics Poisson-Boltzmann surface area calculation revealed thermodynamically stable binding energies of -129.266 ± 2.428 kJ/mol and - 116.478 ± 3.502 kJ/mol for lead1 and lead2 with SARS-CoV-2 Mpro, respectively.


Subject(s)
COVID-19 Drug Treatment , Coronavirus M Proteins/chemistry , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Pyrimidines/chemistry , SARS-CoV-2/enzymology , Triazoles/chemistry , Amino Acid Sequence , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Coronavirus M Proteins/metabolism , Crystallography, X-Ray , Humans , Molecular Docking Simulation , Prodrugs/chemistry , Prodrugs/metabolism , Protease Inhibitors/metabolism , Protein Binding , Pyrimidines/metabolism , SARS-CoV-2/isolation & purification , Sequence Alignment , Thermodynamics , Triazoles/metabolism
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118825, 2021 Jan 05.
Article in English | MEDLINE | ID: covidwho-765598

ABSTRACT

Novel antiviral active molecule 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl)acetamide has been synthesised and characterized by FT-IR and FT-Raman spectra. The equilibrium geometry, natural bond orbital calculations and vibrational assignments have been carried out using density functional B3LYP method with the 6-311G++(d,p) basis set. The complete vibrational assignments for all the vibrational modes have been supported by normal coordinate analysis, force constants and potential energy distributions. A detailed analysis of the intermolecular interactions has been performed based on the Hirshfeld surfaces. Drug likeness has been carried out based on Lipinski's rule and the absorption, distribution, metabolism, excretion and toxicity of the title molecule has been calculated. Antiviral potency of 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro-phenyl) acetamide has been investigated by docking against SARS-CoV-2 protein. The optimized geometry shows near-planarity between the phenyl ring and the pyrimidine ring. Differences in the geometries due to the substitution of the most electronegative fluorine atom and intermolecular contacts due to amino pyrimidine were analyzed. NBO analysis reveals the formation of two strong stable hydrogen bonded N-H···N intermolecular interactions and weak intramolecular interactions C-H···O and N-H···O. The Hirshfeld surfaces and consequently the 2D-fingerprint confirm the nature of intermolecular interactions and their quantitative contributions towards the crystal packing. The red shift in N-H stretching frequency exposed from IR substantiate the formation of N-H···N intermolecular hydrogen bond. Drug likeness and absorption, distribution, metabolism, excretion and toxicity properties analysis gives an idea about the pharmacokinetic properties of the title molecule. The binding energy -8.7 kcal/mol of the nonbonding interaction present a clear view that 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl) acetamide can irreversibly interact with SARS-CoV-2 protease.


Subject(s)
Acetamides/chemistry , Antiviral Agents/chemistry , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Pyrimidines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Acetamides/pharmacokinetics , Antiviral Agents/pharmacokinetics , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Nonlinear Dynamics , Protease Inhibitors/pharmacokinetics , Protein Conformation , Pyrimidines/pharmacokinetics , Quantum Theory , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , Vibration , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL